
White Paper Report

Report ID: 98500

Application Number: HD5060109

Project Director: Natalia Smith (nsmith@email.unc.edu)

Institution: University of North Carolina, Chapel Hill

Reporting Period: 5/1/2009-4/30/2010

Report Due: 7/31/2011

Date Submitted: 8/7/2011

img2xml: Linking manuscript page
images to TEI transcripts using SVG
Hugh A. Cayless, Co-Investigator (NYU)

Introduction
The img2xml project began with the observation that the Open Source tool potrace [1] could
be used to generate Scaleable Vector Graphic (SVG) tracings of writing on a manuscript page.
The goal of the project has been to start the development of a toolset for image-text linking and
to explore the capabilities and limitations of the available tools. We very deliberately avoided
attempting to construct an end-to-end solution for linking image and text, believing that a toolkit
is a much more scaleable and extensible way to approach the problem. The main outcomes
of this initial startup grant are a demonstrator project, Verses and Fragments: The James L.
Dusenbery Journal (1841–1842) (http://docsouth.unc.edu/dusenbery/), and the source code
hosted at https://github.com/hcayless/img2xml.

The tools and standards used in the course of this project include:

● Django (https://www.djangoproject.com/) – a web publishing framework written in the
Python language

● Djatoka (http://djatoka.sourceforge.net/) – a Java-based open source image server
● The Gimp (http://www.gimp.org/) – an Open Source graphics editing tool
● ImageMagick (http://www.imagemagick.org/) – a software suite to create, edit,

compose, or convert bitmap images
● Inkscape (http://inkscape.org/) – an Open Source vector graphics editor
● jQuery (http://jquery.com/) – a fast and concise JavaScript Library that simplifies HTML

document traversing, event handling, animating, and Ajax interactions for rapid web
development.

● potrace (http://potrace.sourceforge.net/) – a utility for tracing bitmaps
● Python scripts for detecting lines of text (https://github.com/hcayless/img2xml)
● Scaleable Vector Graphics (SVG, http://www.w3.org/Graphics/SVG/) – an XML-based

format for vector graphics
● The Text Encoding Iinitiative (TEI, http://www.tei-c.org) – an XML-based format for texts
● OpenLayers (http://openlayers.org/) – an Open Source javascript web mapping

framework
● XSLT (http://www.w3.org/standards/xml/transformation) – a language for transforming

XML documents

It should be noted that while the Dusenbery Journal made use of all of these in its development,
it does not exploit them all in its web presentation. The goal was to produce a text side-by-side

http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
http://docsouth.unc.edu/dusenbery/
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.djangoproject.com/
http://djatoka.sourceforge.net/
http://djatoka.sourceforge.net/
http://djatoka.sourceforge.net/
http://djatoka.sourceforge.net/
http://djatoka.sourceforge.net/
http://djatoka.sourceforge.net/
http://djatoka.sourceforge.net/
http://djatoka.sourceforge.net/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://inkscape.org/
http://inkscape.org/
http://inkscape.org/
http://inkscape.org/
http://inkscape.org/
http://inkscape.org/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://jquery.com/
http://potrace.sourceforge.net/
http://potrace.sourceforge.net/
http://potrace.sourceforge.net/
http://potrace.sourceforge.net/
http://potrace.sourceforge.net/
http://potrace.sourceforge.net/
http://potrace.sourceforge.net/
http://potrace.sourceforge.net/
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.tei-c.org
http://www.tei-c.org
http://www.tei-c.org
http://www.tei-c.org
http://www.tei-c.org
http://www.tei-c.org
http://www.tei-c.org
http://www.tei-c.org
http://www.tei-c.org
http://openlayers.org/
http://openlayers.org/
http://openlayers.org/
http://openlayers.org/
http://openlayers.org/
http://openlayers.org/
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation
http://www.w3.org/standards/xml/transformation

with a zoomable image, where lines of text were linked to lines in the page image. This could
have been achieved with SVG, but OpenLayers provides similar functionality and supports
browsers that lack SVG support.

The problem domain
An SVG tracing (and the SVG format in general) offers a means to deal effectively with some
of the problems surrounding the linking of image to text. The Text Encoding Initiative (TEI)
Guidelines provide mechanisms for linking image and text, but these suffer from the following
issues:

1. If one wishes to describe the relationship of, e.g. a line of text in a transcription to a zone
in an image of the text, one must employ a coordinate system to describe the zone in the
image. If the link is to a single image, the coordinate system employed may be based
on the pixel size of the image, but this works less well when there are multiple versions
(e.g. different resolutions or different shots) of the text image. TEI does this with the
tei:facsimile element’s children tei:surface, which defines the bounds of the text-bearing
surface and tei:zone, which defines a rectangular or polygonal space within a tei:surface.
The nature of the coordinate system tei:facsimile employs is underspecified, however. It
does not specify units or orientation (though the examples given seem to assume pixels
and a top-down orientation).

2. The limitations of TEI’s implementation of facsimile coordinate systems mean that a
generic solution, in which, for example, the given coordinates correspond to physical
measurements rather than pixel dimensions would require extra definition that TEI
isn’t set up to handle. Such a solution requires the ability to perform coordinate system
transformations.

3. The zone’s shape must be defined. Until recently, TEI only permitted rectangular zones,
identified by the x or y coordinates of their corners. The attribute @points on tei:zone
has recently been added, permitting polygons to be represented.

4. TEI, because of its reliance on XML’s tree structure, and the way in which its semantics
are bound to that structure, may have trouble marking a line of text as being the unit
corresponding to a zone in an image.

SVG offers at least a partial solution to problems 1, 2, and 3. It seamlessly handles multiple
coordinate systems, scaling and translation, and supports a variety of shapes, including
complex paths. Moreover, since it is an XML-based format, shapes may be given unique
identifiers and pointed to using standard techniques. GIS tools, like OpenLayers, offer similar
capabilities. This paper will outline the solution to #4 used in the Dusenbery project, which is on
the simple, but kludgy end of the spectrum, and discuss some possibilities for more complete
solutions.

Demonstrator: James Dusenbery’s Journal

http://docsouth.unc.edu/dusenbery/journal/

The journal is a handwritten document, authored by a student at the University of North Carolina
at Chapel Hill in the 1840s. Roughly the first half of the journal consists of songs and poems
Dusenbery liked, and copied, and the latter half begins as a conventional journal and concludes
with copies of several letters (see http://docsouth.unc.edu/dusenbery/about/). It thus presents a
nice mixture of verse and prose, and provided a good test for our line-recognition workflow. The
SVG tracing converts contiguous segments of text into SVG paths, a path being a closed series
of points connected by lines or Bézier curves, and forming a complex shape. Dusenbery’s
handwriting is cursive and fairly florid, with ascenders and descenders that frequently touch the
line above or below (see e.g. lines 2-4 of http://docsouth.unc.edu/dusenbery/journal/#jld-p116).
This means that strokes which touch across line boundaries will be a single svg:path, as can be
seen in the example below:

Clearly, line detection is not simply a matter of finding SVG objects that line up horizontally.
The line detection algorithm employed for the project works by finding peaks in the number of
average-or-greater-sized svg:paths on the Y-axis of the document. These peaks tend to be
located close to the baseline of a line of text. The program throws out peaks that are too close
together to be separate lines. The algorithm is fairly naïve, but has proven effective at finding
lines in the Dusenbery journal, and in tests on other material. The figure below illustrates the
peaks detected by the line_detector.py program.

http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/journal/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/about/
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116
http://docsouth.unc.edu/dusenbery/journal/#jld-p116

The workflow used to create the presentation of the Dusenbery journal begins with a
pre-processing step, during which the dark backgrounds against which the pages were
photographed are removed from the images. This can be done in any image editing program
simply by selecting the text area of the image, inverting the selection, and filling the new
selection with white. This prevents interference of non-textual marginal marks in the line
detection process. More difficult source images might require more pre-processing. The potrace
program relies on converting the source image to black and white, using a cutoff value to
decide which pixels become black and which white based on their brightness. For this reason,
eliminating “false positives” before processing improves the results.

The modified TIFF images were then converted to a format that can be processed by potrace
using ImageMagick’s convert tool. Potrace was then run over the resulting bitmaps. The

program’s -k parameter determines the black/white cutoff point. A command like:

potrace -s -k 0.6 image.pnm

produces an SVG file, image.svg. Since this is a UNIX system, batch commands may be used,
like:

for f in $(ls *.pnm); do potrace -s -k 0.6 $f; done

‘-k’ can be adjusted to optimize the results. In addition, the ‘-t’ parameter can be used to
eliminate specks in the source image. The resulting images may then be processed with the line
detection algorithm, using a command like:

python line_detector.py input.svg output.svg

The line detection program adds svg:rect shapes to the SVG and simultaneously ungroups
the svg:paths so that they may be independently selected. The resulting document can then
be opened, checked, and if necessary corrected using an SVG editing program, like Inkscape.

A final step in the process involves adjusting the SVG document’s coordinate system to match
the dimensions of the source image. An XSLT stylesheet, with the input of width and height
parameters is used to adjust the document’s coordinate system and scale the shapes therein.

The Dusenbery project does not use the SVG documents themselves in its presentation.
Such a use is certainly possible: the source images could be embedded in the SVG, and
Javascript can be used to enable an interactive interface, changing shape colors, making
shapes visible or invisible, and so on. One of the central requirements of the project, however,
is broad cross-browser interoperability, and Internet Explorer will not support SVG natively
until version 9. Making the page images zoomable was another project requirement, so we
decided to use OpenLayers and Djatoka with the OpenLayers-Djatoka plugin (http://goo.gl/
0ZC46) and to export the line rectangles as OpenLayers features. Since the SVG surrogates
are XML, a simple XSLT stylesheet can be used to convert them to Javascript and the TIFF
images are converted to JPEG2000. In the journal, the image is displayed on the left, and the
transcription on the right. When a user hovers over a line in the transcript, the line on the image
is highlighted; the image can be zoomed and panned, and the highlighting functions at any
zoom level.

The text-image linking scheme in Dusenbery relies on the position of lines on a page in the
transcription and in the SVG. Rectangles are assigned an @id attribute like “line1”, and lines
in the text have @xml:ids in the form “jld-p106-3”, where the -N suffix is the line number. The
viewer Javascript simply activates the highlight for the corresponding feature in the image. More
comprehensive solutions are possible, but are complicated by a lack of available standards. In
the end, we decided to keep the demonstrator’s implementation simple.

http://goo.gl/0ZC46
http://goo.gl/0ZC46
http://goo.gl/0ZC46
http://goo.gl/0ZC46
http://goo.gl/0ZC46
http://goo.gl/0ZC46
http://goo.gl/0ZC46
http://goo.gl/0ZC46
http://goo.gl/0ZC46

Linking
What does "linking" mean?

1. functional linking, wherein a view presents functionality such as a mouseover on a line of
text causes the line in the image to be highlighted

2. semantic linking, wherein the documents make some effort to actually describe the
relationship between a segment of text in a transcription or similar text document and a
region of a raster or vector image

#1 is relatively easy to achieve, but somewhat brittle. A good example is the Dusenbery journal
demonstrator. It relies on Javascript to paint a rectangle on top of the associated page image
when the user hovers over a line in the transcription. For each page, every line element (either
a or a <tr>) has an id, and a Javascript file that contains associated ids and coordinates
for each line in the image, when an onmouseover event is fired by a in the transcription
HTML view, the code uses the variable whose name corresponds to that id, and modifies the
border visibility of the OpenLayers Vector Feature it references. This all works, but relies on
a number of dependencies: a browser with a Javascript engine, the OpenLayers Library, the
image server application and the Javascript code OpenLayers uses to load the image, and
the jQuery library, used to bind the onmouseover and onmouseout events on each to
the code to switch the OpenLayers feature's border on or off. Without these dependencies,
the linking would not function. The semantics of this linking method are quite weak—they
essentially rest on the fact that the line-containing HTML elements and the variables containing
the OpenLayers Vector Features share a name/id.

#2 is harder. We have problems on both sides, image and text. For the source image, we don't
begin too badly: we have a raster image, with an SVG derivative, which can link to or embed
the source image, using it as a background layer, for example. We have vector paths tracing
the text, and rectangles denoting lines of text. The semantics of SVG are purely geometric,
however. There is no notion other than overlap to signal any containment relationship between
line-rectangle and paths, so the "lines" do not in fact group together or bound the traced text in
any way. Adding metadata to the SVG, in the form of RDF triples, could address this problem,
but here we are faced with adapting or inventing an ontology to describe the relationships.
Some preliminary work was done during the grant period on this, but more is needed. On the
text side, we have been assuming a TEI document. Obviously there are a variety of ways to
present a text document, even using plain text, but TEI XML seems likely to provide us with
sufficient semantics and hooks to achieve our goals.

Perhaps it is best to begin with a note on XML and pointing semantics. XML documents are
trees. There is a root element that contains all other elements, and elements and other nodes
(such as text) must nest hierarchically. There are a number of ways to reference parts of an
XML document that are W3C standards, and TEI defines some additional ones, but the most
well-supported of these are fragment identifiers and XPath. A fragment identifier relies on
the fact that any XML element may have an id or xml:id attribute. An element with this kind
of id attribute can be addressed, conveniently, with the URL of the document plus a hash '#'
followed by the identifier. This means, for example, that internal links can be made just using
the form ‘#id’. XPath is far more complex, using a path notation similar to directory paths on a
filesystem or in a URL. With it, any node (including text nodes and attributes) in the XML tree is
addressable.

The TEI Guidelines define a number of pointer schemes (see http://goo.gl/b8M3n) as

http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n
http://goo.gl/b8M3n

extensions to the basic URI scheme, including one using XPath version 1.0, through which
arbitrary segments of the document (including segments that are not compatible with XML's tree
structure) may be addressed. Crucially, however, these have never been implemented, and it is
not clear even what implementation would mean.

In our demonstrator source text, the Dusenbery Journal, there are three ways in which a line
of text may be indicated: a <lb/> (line-beginning) tag, a <line>, containing a line of verse, and a
<row> in a table. The second and third of these contain the text of the line, but the first is a self-
closing tag. The semantics of TEI and XML are such that it seems safe to say that a <line> is
a line of text, but a line beginning is not a line of text, only the beginning of one. We therefore
have a problem similar to the one we saw in the SVG: it can be a bit hard to point to an actual
line of text. And we have a concrete use case for doing so: when we generate the HTML view
of the document (as in the demonstrator), we will want to surround each line with an HTML
, to which we can bind events triggering behaviors in the associated image. Handling
this pointing function would mean taking one of at least three different approaches:

1. we could make the assertion that an <lb/> is a surrogate for a line, and that pointing to
the <lb/> is sufficient. This has the advantage of simplicity, as the <lb/> can be referred
to with a fragment identifier, but it does not allow us any way to easily retrieve the text of
a line. Complex XSLT must be used. (NOTE: this is the approach we used, in fact, and it
requires a pre-processing step on the XML, plus some rather awkward XSLT to achieve,
the problem being that the tree structure of the result document is dissimilar from that of
the source).

2. we could add markup to the TEI document to contain each line, using a <seg> perhaps.
This has the advantage of being relatively easy to implement, and allowing us to refer to
the line using a fragment identifier, and gives us the ability to retrieve a line of text, but it
adds an aspect to the document's hierarchy that may be incompatible with other features
of the text that we want to mark up. So we have more potential for overlap, and more
mess.

3. we can try to employ TEI's pointer schemes, perhaps range() or string-range() to
indicate lines. This would allow us to unambiguously indicate lines beginning with <lb/
>s, but it suffers from difficulties in the creation of the pointers and from the lack of
implementations. An experimental implementation of string-range() using XSLT 2.0 has
been developed by the author and a colleague (http://goo.gl/pBgZ3), but it is not robust,
nor standard enough for use in a production environment.

If we can effectively point to lines in the image and lines in the text, then TEI's facsimile module
is adequate to the task of defining the links between text and image. As we noted above, the
lack of an ability to define a coordinate system in facsimile is more than made up for by SVG's
abilities in that regard. We have no need therefore to employ the coordinate-bearing attributes
on <surface> or <zone>, we can simply point to the SVG and elements therein.

TEI’s facsimile module did not seem well suited to links employing an intermediate object. It is
designed to link a text to an image, using pixel measurements to define the surface and zones
where linked objects occur. TEI does not provide any way to define the coordinate system
used in linking to an image. An independent coordinate system would enable links that could
(for example) reference the physical dimensions of the source text itself, rather than surrogate

images. Multiple surrogates could be mapped into that coordinate system, meaning that text-
image links could encompass multiple images and would be extensible, allowing new images
to be linked without the need to change the surface or zone definitions. It should be noted that
modifying the SVG’s coordinate system to use physical rather than digital measurements is
trivial, and that placing multiple raster images into that coordinate system is fully supported.

Open Annotation
The Open Annotation Collaboration draft specification (http://goo.gl/NDgb2) provides another
potential way to link image and text. OAC has a concept of “Constrained Targets” (http://goo.gl/
8ZTUP), in which the SVG shapes might serve to constrain links between text and image. The
OAC draft envisions an RDF representation of annotation links, which, since it relies on URIs,
would be subject to the same issues discussed above. OAC might work well in concert with the
SVG tracings, as it could provide semantics (e.g. “this shape contains this line of text”) which
are lacking in the SVG format.

Future Work
We consider this initial exploration of methods for using SVG as an intermediary in linking
between TEI documents and manuscript images to be promising. The construction of a toolkit
that can be used to build image processing workflows has begun, and has been successfully
demonstrated in the Dusenbery Journal. The components of that toolkit are a combination of
third-party Open Source software, Open Standards, and Open Source software developed for
the project and hosted on GitHub at https://github.com/hcayless/img2xml.

After a prolonged infancy, the widespread adoption of SVG as a format for vector graphics on
the web seems to have gained momentum. IE9 will support it, meaning that for the first time
all the major web browsers will display SVG without the need for a plugin. SVG seems like
a natural solution to the problem of annotating images in a generalized way, and since SVG
documents can be easily edited with tools like Inkscape, injecting people into the workflow for
quality assurance and editing is likely to be straightforward.

The immediate future for img2xml is likely to center on a) further defining and improving
the standards for encoding text/image links and b) exploring the integration of the code and
methods developed for the project into the Text-Image Linking Environment as a plugin.

http://goo.gl/NDgb2
http://goo.gl/NDgb2
http://goo.gl/NDgb2
http://goo.gl/NDgb2
http://goo.gl/NDgb2
http://goo.gl/NDgb2
http://goo.gl/NDgb2
http://goo.gl/NDgb2
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
http://goo.gl/8ZTUP
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml
https://github.com/hcayless/img2xml

